Dimension Selection for Feature Selection and Dimension Reduction with Principal and Independent Component Analysis
نویسندگان
چکیده
This letter is concerned with the problem of selecting the best or most informative dimension for dimension reduction and feature extraction in high-dimensional data. The dimension of the data is reduced by principal component analysis; subsequent application of independent component analysis to the principal component scores determines the most nongaussian directions in the lower-dimensional space. A criterion for choosing the optimal dimension based on bias-adjusted skewness and kurtosis is proposed. This new dimension selector is applied to real data sets and compared to existing methods. Simulation studies for a range of densities show that the proposed method performs well and is more appropriate for nongaussian data than existing methods.
منابع مشابه
Feature Dimension Reduction of Multisensor Data Fusion using Principal Component Fuzzy Analysis
These days, the most important areas of research in many different applications, with different tools, are focused on how to get awareness. One of the serious applications is the awareness of the behavior and activities of patients. The importance is due to the need of ubiquitous medical care for individuals. That the doctor knows the patient's physical condition, sometimes is very important. O...
متن کاملDeveloping a Filter-Wrapper Feature Selection Method and its Application in Dimension Reduction of Gen Expression
Nowadays, increasing the volume of data and the number of attributes in the dataset has reduced the accuracy of the learning algorithm and the computational complexity. A dimensionality reduction method is a feature selection method, which is done through filtering and wrapping. The wrapper methods are more accurate than filter ones but perform faster and have a less computational burden. With ...
متن کاملA Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)
Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملارائه یک روش برچسب گذاری سیگنالهای مغزی بهمنظور طبقهبندی حالتهای مختلف بیهوشی
Aims and background: This study develops a computational framework for the classification of different anesthesia states, including awake, moderate anesthesia, and general anesthesia, using electroencephalography (EEG) signals and peripheral parameters. Materials and Methods: The proposed method proposes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural computation
دوره 19 2 شماره
صفحات -
تاریخ انتشار 2007